Les orbitales atomiques, où est passé mon électron ?
Foutus électrons.
Les électrons sont à la base de la chimie. Ce sont eux qui lient les atomes entre eux et qui déterminent leur réactivité. Les orbitales décrivent les positions que l'électron peut prendre dans un atome ou dans une molécule. L'étude des orbitales permet d'expliquer et de prévoir la forme et la stabilité des molécules, les énergies de ionisation des atomes, et tout plein d'autres choses.
Cet article contiendra de la physique quantique, de la lumière, Erwin Schrödinger (mais pas son chat), des probabilités, des spins et des atomes.
Cet article peut contenir des erreurs, je ne suis pas encore un spécialiste (mais j'essaie très fort). Fiat Lux
Edheltar nous a parlé de raies d'émissions des étoiles (non, toujours pas celles-là) qui sont connues. Je vais (rapidement) les définir un peu plus.
Tout d'abord, la lumière. C'est une onde électromagnétique, au même titre que les micro-ondes qui chauffent ton lait le matin, les ondes radio qui te disent de voter Sarkozy, les rayons X et les UV donneuses de cancer. La différence entre toutes ces ondes est la longueur d'onde ou la fréquence.
Le vitesse de ces ondes est constante; c'est la vitesse de la lumière.
La longueur d'onde est la distance entre 2 sommets de l'onde. Imaginez les vaguelettes formées par la chute d'un canard grippé dans une mare.
La fréquence est le nombre de "vagues" qui passent en un point par seconde.
Voici un petit diagramme qui récapitule tout ça.
La fréquence et la longueur d'onde sont liées par la vitesse de la lumière.
La longueur (en mètre) * la fréquence (en par seconde) = la vitesse de la lumière (en mètre par seconde).
Plus la longueur d'onde est courte, plus sa fréquence est haute et inversement. Du point de vue énergétique, plus la fréquence est haute, plus le rayonnement est énergétique.
Dans les fréquences (ou longueurs d'onde) visibles, les couleurs sont définies par leur longueurs d'onde. Le blanc est un mélange de toutes les fréquences visibles.
Un spectroscope va trier les fréquences, donc les couleurs, dans le cas de la lumière visible. C'est le spectre.
C'est ce que fait un arc-en-ciel ou un prisme.
C'est là qu'on observe les fameuses raies.
En effet, on a remarqué que quand on passe du sodium dans une flamme bleue d'un bec bunsen la flamme se colore en jaune.
Et si on observe la flamme à travers un spectroscope, on voit des raies dans la zone jaune du spectre visible. Car il y a beaucoup de jaune dans la lumière émise. C'est le spectre d'émission.
C'est comme ça qu'on fait des feux d'artifice.
Quelques spectres d'émission.
Vous voyez qu'avec les autres éléments, il y a aussi des raies très caractéristiques.
Mais d'où proviennent-elles ?
L'énergie par paquets
Il est étrange qu'un atome comme le sodium n'émette que certaines fréquences bien définies. Ceci est explicable par la physique quantique.
En effet, la lumière émise par l'atome chauffé, est un moyen pour lui de perdre de l'énergie acquise par chauffage ou par stimulation électrique, comme dans un tube néon.
Ce qui se passe dans l'atome, c'est que l'énergie reçue est transmise à l'électron qui passe de l'état normal à l'état excité.
Cet électron ne veut qu'une chose: perdre cette énergie pour repasser à l'état normal.
Il le fait en émettant de la lumière. C'est cette lumière que l'on voit.
La longueur d'onde représente la quantité d'énergie libérée par le changement d'état de l'électron.
On remarque que ce changement d'état se fait par palier. Ce n'est pas continu. C'est là qu'on observe la théorie quantique.
L'énergie est transmise par quantité discrète, par paquets, appelés quanta. Pour la lumière, le paquet d'énergie est appelé photon. Les différentes raies correspondent à différents paliers d'excitation (ou niveau d'énergie) de l'électron.
Tous sur orbite !
L'électron se comporte, comme la lumière, à la fois comme une onde et une particule en même temps .
Cette nature ondulatoire de l'électron permet d'expliquer cette histoire de niveau d'énergie des électrons.
C'est Erwin Schrödinger qui a imaginé une équation qui décrit les électrons en terme de mécanique quantique. Cette équation n'est pas démontrée; c'est un postulat.
Elle décrit la probabilité de trouver un électron à un endroit donné dans l'espace. L'orbitale atomique est la région où il est le plus probable de trouver l'électron.
Il y a plusieurs formes d'orbitales atomiques. Elle sont classée en plusieurs catégories, dont les principales sont notées "s", "p", "d" et "f".
Il y en a plus, mais c'est plus rare. Avec une orbitale de type "s", les points où il est le plus probable de trouver l'électron donnent une sphère.
Pour une orbitale de type "p", on obtiendra deux lobes situés de part et d'autre du noyau, séparés par ce qu'on appelle un plan nodal qui passe par le noyau.
Les orbitales "d" et "f" sont plus complexes et on s'en sert moins souvent pour l'explication de phénomène chimiques.
Dans les types "p","d" et "f", il y a plusieurs orientations possibles pour les orbitales.
Par exemple, le plan nodal d'une orbitale de type "p" peut se trouver sur le plan xy, xz ou yz
Les orbitales se superposent en couches suivant le niveau d'énergie de l'atome.
Faites un tour sur l'excellent Orbitron.
Ce site montre des représentations 3D des orbitales, classées par niveau et par type.
http://winter.group.shef.ac.uk/orbitron/
Balladez-vous dans les menus de gauche, là où c'est écrit 1s, 2s, 2p, 3s, ...
Nombres quantiques
Mais où est donc mon électron dans toutes ces orbitales ?
C'est là que Schrödinger (toujours sans son chat) explique presque tout.
Dans le modèle de Schrödinger, qui a été amélioré ultérieurement, chaque électron aune sorte d'"adresse" dans l'atome.
Il y a une seule "adresse" par électron et un seul électron par "adresse". Cette "adresse" est formée de 4 nombres quantiques:
- Le nombre quantique principal "n" qui précise le niveau d'énergie de l'atome, (donc la couche. n = 1, 2, 3, 4, ...)
- Le nombre quantique azimutal "l" donne le type d'orbitale "s", "p", "d" ou "f".
(l = 0, 1, 2, ..., n-1.)
- Le nombre quantique magnétique "m_l" donne l'orbitale "précise" dans le type. (m_l = l, l-1, l-2, ..., -l.)
- Le nombre quantique magnétique de spin "m_s" donne le sens du spin de l'électron.
Le spin, comme son nom l'indique, donne la "rotation" de l'électron autour de son axe. Il ne peut donc prendre que 2 valeurs. Une orbitale peut donc "héberger" 2 électrons qui auront nécessairement des spins opposés.
Un résumé des orbitales possibles:
Construction électronique
Les électrons vont occuper les orbitales en partant de l'orbitale ayant l'énergie la plus basse puis en montant dans l'ordre croissant d'énergie.
Voici un diagramme qui classe les orbitales par énergie.
Les électrons vont prendre en premier les orbitales vides, puis se mettre à 2 par orbitale avant de changer de niveau d'énergie.
Toutes ces histoires d'orbitales expliquent la structure du tableau périodique des éléments.
En effet, on remarque que si n = 1, il n'y a qu'une orbitale possible, donc 2 électrons au maximum. C'est la première ligne du tableau, avec l'hydrogène et l'hélium.
Si n = 2, l'orbitale "s" va se remplir en premier. C'est le cas du lithium et du béryllium, puis les trois orbitales "p" dans le cas du brome, carbone, azote, oxygène, fluor et néon. Et ainsi de suite pour le reste du tableau.
Chaque colonne est composée d'éléments ayant le même remplissage d'électrons pour leur dernière couche. Vu que c'est cette dernière couche qui détermine une grande partie de la réactivité des éléments, les colonnes ont des réactivités semblables.
Par exemple, la première colonne, le groupe des métaux alcalins, réagit de manière assez violente avec l'eau, à cause de son électron solitaire dans la dernière couche.
Voici la fin d'une brève incursion dans le monde magique de la chimie.
Merci de l'avoir suivie. En cas de douleurs encéphaliques, de l'acide acétylsalicylique est disponible chez votre chimiste local.
Les questions, remarques, commentaires sont bienvenues.
Les insultes aussi, mais un peu moins.
Sources de l'article
Peter Atkins, Loretta Jones
Chimie: Molécules, matière, métamorphoses
DeBoeck, Bruxelles (1998)
---
Les slides du cours de chimie que je suis.
http://lcbcpc21.epfl.ch/aimf/
Compléments de l'article
Pour les orbitales atomiques : http://en.wikipedia.org/wiki/Atomic_orbital
Pour l'équation de Schrödinger : http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger
Eleveur de fanboys